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Abstract 

We find the second-order in v/e effects in the four different modifications of the "rotating 
disk" experiment whose first-order effects have been analyzed and the experimental results 
obtained by us reported in another paper. The differences between our absolute space-time 
theory and the Newtonian ether theory are within effects of second order in vie. We 
propose experiments for the measurement of the second-order effects on the "rotating 
disk" that can be considered as experimenta erucis between both theories. 

1. Introduction 

We have dedicated earlier papers to the analysis of  the first-order in v/c 
effects in the "rotating disk" experiment (Marinov, 1975a, 1976a, 1976b). 
In Marinov (1976a) we give the account of  the disrupted "rotating disk" experi- 
ment and in Marinov (1976b) of  the Harress-Marinov and Harress-Fizeau experi- 
ments, performed recently by us. All these experiments, as well as the "coupled- 
mirrors" experiment (Mafinov, 1974b, 1976c), with whose help we have measurec 
for the first time in history the Earth's absolute velocity, show that the 
velocity of  light is direction dependent in any frame moving with respect to 
absolute space. Within effects of  first order in v/c this dependence is the same 
as that predicted by the Newtonian ether theory. 

However, our absolute space-time theory (Marinov, 1975b) leads to effects 
of  second order in v/c that differ from those predicted by the ether theory. 
In this paper we shall show which are the second-order effects in the "rotating 
disk" experiment according to our conceptions. Before tackling this problem 
we shall find by the help of  our "hitch-hiker" model (Marinov, 1974a) the 
velocity of  light in a medium that rests in absolute space if this velocity is 
measured in a frame (i.e., by an observer) moving with respect to absolute 
space. 

© 1 9 7 7  P l e n u m  Pub l i sh ing  C o r p . ,  2 2 7  West  1 7 t h  S t r e e t ,  N e w  Y o r k ,  N .Y .  1 0 0 1 1 .  T o  pro-  
m o t e  f r e e r  a c c e s s  t o  p u b l i s h e d  m a t e r i a l  in t h e  spi r i t  o f  t h e  t 9 7 6  C o p y r i g h t  L a w ,  P l e n u m  
sells r e p r i n t  a r t i c les  f r o m  all  i ts  j o u r n a l s .  Th i s  ava i lab i l i ty  u n d e r l i n e s  t he  f a c t  t h a t  n o  p a r t  
o f  th i s  p u b l i c a t i o n  m a y  be  r e p r o d u c e d ,  s t o r e d  in a r e t r i eva l  s y s t e m ,  or  t r a n s m i t t e d ,  in a n y  
f o r m  or  b y  a n y  m e a n s ,  e l e c t r o n i c ,  m e c h a n i c a l ,  p h o t o c o p y i n g ,  m i c r o f i l m i n g ,  r e c o r d i n g ,  o r  
o t h e r w i s e ,  w i t h o u t  w r i t t e n  p e r m i s s i o n  o f  t h e  pub l i she r .  S h i p m e n t  is p r o m p t ;  r a t e  per  
a r t i c l e  is $ 7 . 5 0 .  

829 



830 STEFAN MARINOV 

2. Velocity o f  Light in a Medium at Rest Measured by a Moving Observer 

In Marinov (1974a) we have found the velocity of  light in a medium that 
moves at velocity v in absolute space measured by an observer who is at rest. 
Now we shall find the velocity o f  light in a medium that rests in absolute 
space measured by  an observer who moves at velocity v. The theory of  
relativity cannot make such a distinction because for this theory only the 
relative velocity between the medium and the observer is of  importance. 
Our absolute space-time theory can pose this problem and resolve it, and, as 
we have experimentally established (Marinov, 1976b), experience has 
splendidly verified our predictions. 

Thus let there be (see Figure i )  a medium with refractive index n that is at 
rest in absolute space and in which light propagates along a direction that 
makes an angle 0 with the x axis of  a frame K attached to absolute space. Let 
another frame K '  move at velocity v along the positive direction of  the x axis 
of K and assume that the x axes of both  frames are collinear and the y axes 
parallel. 

We choose as a t ime unit the time between two successive absorptions of a 
photon  on the molecules of  the medium. At such a choice of  the time unit a 
photon  propagating along the direction A F  in the rest frame K is "hi tched"  
( 1  - 1/n)th part of  the time unit onto a molecule that  rests at point  A and 
(1/n) th  part of  the time unit moves along the line AF until it is "h i tched"  
again onto another molecule, which rests at point F (see Marinov, 1974a). 

Y 
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Fig. 1. The paths of a photon proceeding in a medium that rests in absolute space with 
respect to the rest and moving frames. 
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In the moving frame K '  we shall have the following picture: During the 
time in which the photon is "hitched" it will cover the distance A B  with 
velocity v and during the time in which the photon propagates with velocity 
c in absolute space it will cover distance B C i n  K '  (at an angle 0'  to the x '  axis) 
with a velocity (measured on a clock that rests in K ' ! )  (Marinov, 1976c) 

C 
co - ( 2 . 1 )  

1 + (v /c )  cos0'  

since during the time in which the photon has covered the broken line A B C  
in frame K '  the molecule that rests at point F in absolute space has covered 
distance F C  in K '  with velocity v. We call (Marinov, 1976c) c~ the proper 
relative light velocity. The mean proper relative light velocity in frame K' (i.e., 
the average light velocity measured in K '  by the help of  a clock that rests there) 
wilt make an angle 0 o with the x '  axis and have magnitude 

C'Om = A C  = ( A B  2 + B C  2 - 2 A B -  B C c o s  0') 1/2 (2.2) 

since the time between two successive absorptions of  the photon is taken equal 
to unity. 

Substituting into (2.2) 

c ! 
A B  = v(1 - 1/n), B C -  (2.3) 

1 + (v/c) cos O' n 

and working within an accuracy of  second order in v/c, we obtain 

, C 13 2 its2 ( 7l)2 
Corn - n v c ° s O ' + - - c ° s 2 0 ' + ~ - - n c n  _ c 1 - -  sin20 ' (2.4) 

Tile angle that the observer should measure between the direction of  propa- 
gation of light and the x '  axis in frame K '  is 0o. Thus, substituting into (2.4) 

O' = 0 o - 7 ( 2 . 5 )  

where 3' is a small angle and, as we shall see further, within the necessary 
accuracy we can take 

A B s i n O '  v 0 '  v 
s i n T -  --~ ( n - 1 ) s i n  - ~ - ( n -  1)s in0o (2.6) 

A C  c c 

we obtain 

t 

C O r n  - 

c lv2( ) 
- - - v c o s 0 o + - - c o s 2 0 o - - - - n  1 -  sinZ0o (2.7) 

n cn 2 c 
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The angle between the x axis and the direction of  propagation of  light whicl 
should be measured in frame K is 0. Thus, substituting into (2.7) 

Oo = o + ( 2 , s )  

where a is a small angle and, as we shall see further, within the necessary 
accuracy we can take 

C F  sin 0 v 
sin a - --- - n sin 0 (2.9) 

A C  c 

we obtain 

c v2 v2( ) 
= - - v c o s O + - - c o s 2 0 + l - - - n  1 +  sin20 (2.10) 

Corn n c n  2 e 

t ! 
If n = l ,  it will be Corn = Co, so that formula (2.7) reduces to the following 

one (for n = t it is 0 o = 0'):  
t 

Co = c - v cos O' + (vZ/c)  cosZO ' (2.11) 

and formula (2.10) reduces to the following one: 

6,; = 6, - v cos  0 + / 2 %  ( 2 . 1 2 )  

which coincide within an accuracy of  second order in v/c ,  respectively, with 
the first and second formulas for the proper relative light velocity in a frame 
moving at velocity v in absolute space (Marinov, 1976c) 

, c 1 - ( v / c )  cos 0 
Co - 0'  - c (2.13) 

1 + (V/6,) COS 1 - "  102/6, 2 

For 0 = 0 o = O, formulas (2.7) and (2.10) give 

r 6' /22 
6,ore = - - v + - -  (2.14) 

/7 Cr/ 

For 0 = rr/2, 0o = rr/2 + ( v / c ) n ,  formulas (2.7) and (2.10) give 

, _6, +1 -  - - n  1 + ( 2 . 1 5 )  
6,Ore = ~ 2 C 

We recall (Marinov, 1976c) that co is the proper relative light velocity, i.e., 
6,~ is the light velocity in the moving frame measured by the help of a clock 
which is at tached to the moving frame. The absolute relative light velocity, 
called for short relative light velocity, is the same quanti ty,  but measured by 
the help of  a clock that is attached to absolute space, and it is equal to 

6,'= C; (l  /22/6"2) 1/2 (2.16) 

Let us find now the velocity of  light in a medium moving with respect to 
absolute space and measured in a frame attached to the medium. 



SECOND-ORDER EFFECTS IN ROTATING DISK EXPERIMENT 833 

Since in such a case (1 - 1/n)th part of the time unit the photon is 
"hitched" and does not move with respect to the moving frame K', then the 
"effective" velocity of the frame with respect to the trajectory of the "free" 
photon will be (1/n)v. Thus, according to formula (2.13), the proper velocity 
of the "free" photon with respect to K '  will be 

, c 1 - (v/cn)cos 
Co = - c ( 2 . 1 7 )  

1 + (v /cn)  cos 0' 1 - -  (v2/c2n 2) 

With this velocity the photon moves only (1/n)th part of the time unit, so 
that the mean proper velocity with respect to K '  will be 

, 1 , c 1 c 1 - ( v / c n )  cosO 
Com = - Co . . . .  (2.18) 

n n 1 +(v / cn )  cosO'  n 1-(vZ/eZn 2) 

where 0' and 0 are the angles between the direction of light propagation and the 
x axes, respectively, in the moving and rest frames. 

This result can be obtained by the help of Figure 1 in Marinov (1974a). 
Let us note, however, that if we should use the notations given in Mafinov (1974a), 
we should obtain the following expression for the mean velocity with respect 
to K': 

B C  c 1 
' - - ( 2 . 1 9 )  

Cm tm n 1 + (v /en)  cos 0' + ½(vZ/e2n) sin20 ' 

This formula gives the mean light velocity with respect to the moving frame 
K'  measured in absolute time, i.e., the quantity [see (2.16)] 

t 

c ; ,  = Corn (1 - ~,2/c2)t/~ ( 2 . 2 0 )  

The difference in the second-order terms in the formulas (2.19) and (2.20), 
substituting (2.18) into the latter, appears as a result of the fact that in 
obtaining (2.19) we have used only traditional Newtonian conceptions, while 
when obtaining (2.18) we have used formula (2.13) for the light velocity in 
a moving frame given by our absolute space-time theory, which is the true one. 
Thus only formulas (2.18) and (2.20) correspond to physical reality, while 
formula (2.19) corresponds to physical reality within the terms of first order 
in v/c. 

3. The Second-Order E f fec t s  in the Harress-Marinov, -Sagnac, 
-Fizeau,  and -Pogany Exper imen t s  

The measurement of the second-order effects in the "rotating disk" 
experiment is a technologically difficult problem, and in our laboratory we 
cannot cope with it. For this reason we shall propose such experiments with- 
out entering into the details of an eventual practical realization. 

The setup for a measurement of the second-order effects in the "rotating 
disk" experiment is shown in Figure 2. A medium with refractive index n made 
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Fig. 2. The setup for the measurement  of  the  second-order effects 
on the  rotat ing disk. 

in the form of  a cylindrical ring (Marinov, 1976b) with outer radius R can 
rotate with the mirrors 11//1, M 2 . . . . .  Mk _ 1, Mk or without them, or only the 
mirrors can rotate and the medium remain at rest. In the latter case medium 
with refractive index n = 1, i.e., vacuum (air) can be also taken. So there are 
four different possible combinations, as follows (see Marinov, 1976b): 

1. The Harress-Marinov experiment,  in which the medium is at rest 
and the mirrors rotate.  

2. The Harress-Sagnac experiment,  in which the medium is vacuum 
and the mirrors rotate.  

3. The Harress-Fizeau experiment,  in which the medium rotates and 
the mirrors are at rest. 

4. The Harress-Pogany experiment,  in which the medium rotates 
together with the mirrors. 

Let us note that it will be very difficult to measure the second-order effects 
in the Harress-Marinov and Harress-Fizeau experiments,  because there is a 
relative motion between mirrors and medium, so the performance o f  the 
Harress-Sagnac and Harress-Pogany experiments should be easier. 

In Figure 2 S is a light source emitting coherent light, which is rigidly 
connected with the mirrors because the effect to be measured is too small and 
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the use of  a shutter that  is governed by  the rotating disk (Marinov, 1976b) 
would probably discredit the experiment.  P is a photoresistor i l luminated by 
interference light. It is put in one arm of  a Wheatstone bridge, in whose other 
arm there is a variable resistor. We should assume that ML 342 . . . . .  Mk_ 1, Mk 
are placed close enough to the rim of  the medium's disk. Thus we can assume 
that the photons fly along the circumference of  a circle and cover a path d = 27rR 

Let us suppose first that the disk is at rest. Light emitted by the source S is 
split by  the semitransparent mirror S M  into first and second beams. The first 
beam reflects on the mirror M a n d  after refraction on S M  illuminates P. The 
second beam reflects successively on M1 . . . . .  M k clockwise and on 3/I k . . . . .  M1 
counterclockwise and after reflection on S M  illuminates P. 

If now we set the disk in rotat ion,  then the first beam should not  change the 
time in which it will cover its path,  because all the time it moves along the 
radius of  the rotating disk, while the second beam should change its time with 
At. Now we shall calculate this time difference for the four different types of  
the "rotat ing disk" experiment.  

Let us consider first the Harress-Marinov experiment.  Using formulas (2.14) 
and (2.20) we find that  the difference in the absolute times which the second 
beam should spend to cover its path in the cases of rest and rotat ion of the 
mirrors will be 

d d 2d dv 2 
AtH_M - + - n ( 2 n  2 -- 1) (3.1) 

d ;  c 3 

For n = 1, i.e., for the second-order effect in the Harress-Sagnac experiment 
we obtain 

d v  2 

zxtH_s = (3.2) 

It can easily be seen that for the first-order effects in the Harress-Marinov 
and Harress-Sagnac experiments we shah obtain the same formulas as in 
Marinov (1976b),  where the calculation was made in a somewhat different way. 

Let us now consider the Harress-Fizeau experiment.  Using formula (I 7) 
from (Marinov, 1974a), we find that the difference in the absolute times which 
the second beam should spend to cover its path in the cases of  rest and rotat ion 
of  the medium will be 

d d 2d 2dr z 
A tH-p  = -F- + - n(n 2 - 1) (3.3) 

cm c ~  Cm c 3 

And finally let us consider the Harress-Pogany experiment.  Using formula 
(2.18) for 0 '  = 0 = 0, and formula (2.20), we obtain 

d d 2d d r ;  
/ktH-P = ~ T  + -U- - -  ~ .......... 5 ~ n ( 3 . 4 )  

Cm Cm m C 
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From this formula for n = 1 we obtain again the second-order effect (3.2) 
in the Harress-Sagnac experiment. 

4. The Second-Order Effects in the "Rotating Disk" Experiment 
and the Absolute Time Dilation 

The second-order effects in the "rotating disk" experiment are very import- 
ant for the understanding and for establishment of  our absolute time dilation 
conception. Let us show this. 

As is well known (see, for example, Marinov, 1975b), a light clock represents 
two mirrors placed in front of  each other between wt~ch a light pulse goes 
"there and back'.' Instead of  two mirrors we can have an arbitrary number. 
Of importance is only that a light pulse that leaves a given point, returns again 
to it, and repeats this cycle uninterruptedly. Thus our mirrors M1,3//2 . . . . .  
Mk, • •., 342, MI represent also a light clock. 

Let the time that a light pulse spends covering the path d "there and back" 
be T when the mirrors are at rest. Thus T =  2d/c is the rest period of  our clock. 
When the mirrors are set in rotational motion with velocity v = ~2R, where ~2 
is the angular velocity, the period of the fight clock measured in absolute time, 
i.e., by the help of a clock that rests in absolute space, will be [see formulas 
(2.13) and (2.16)] 

d d 2d T 
TO = c 7~+ c ' -  c(1 - v2/e2) 1/2 (1 - -  v2/e2) 1/2 (4.1) 

while the same period measured in proper time, i.e., by the help of  a clock that 
is attached to the rim of  the moving disk, will be 

d d 2d 
= - -  - - -  - T (4.2) Too 4 ++c;- c 

Thus the period of  our light clock rotating with velocity v in absolute space, 
as the period of  any proceeding as a whole with velocity v light clock (Marinov, 
1975b), becomes longer, according to formula (4.1). We have called this effect 
the absolute kinematic time dilation. Let us note that to the absolute dynamic 
time dilation, i.e., to the dilation of  the periods of  light clocks placed near local 
concentrations of  matter, we have dedicated our paper (Marinov, 1976d). 
Further, in the present paper we shall consider only the kinematic time dilation. 

According to the tenth (high-velocity) axiom of  our absolute space-time 
theory (Marinov, 1976c, 1976d), the time unit for any observer is determined 
by the period of  a light clock that has the same "arm" for all observers. When 
the "arm" is d = 150,000 km, then this time unit is called a second. If the 
observer is at rest in absolute space, his second is called absolute. If the observer 
moves with certain velocity in absolute space, his second is called proper. 
Obviously, any proper second is larger then the absolute second and the 
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relation is given by formula (4-.1), where To is the duration of the proper second 
in absolute time and T is the duration of the absolute second in absolute time. 
However this change in the duration of the period of a light clock, when being 
put in motion, can be established only comparing its period with a periodical 
process of a system that is at rest in absolute space (in general, which does not 
change its velocity when the light clock under investigation changes its velocity). 
If we should compare the period of the light clock considered with the periodical 
process of  a system that all the time moves with the same velocity as the light 
clock, then no change can be registered, as follows from formula (4.2). This 
is due to the fact that the rhythm of any periodical process decreases according 
to formula (4.1) if the corresponding system is set in motion witil velocity v. 

All these assertions of our absolute space-time theory can be verified 
experimentally if one measures the second-order effect in the Harress-Sagnac 
experiment. 

The second.order effect in the Harress-Sagnac experiment was treated by 
Burcev (1974), who has proposed also an experiment for its measurement. 
Burcev's proposal consists in the following: Let there by a number ( >  3) of 
artificial satellites moving along the same circular trajectory round the Earth 
with a certain velocity v. If a radar pulse is emitted from the one of the 
satellites, then by means of reflections in the other satellites this radar pulse 
can be again received after having covered a closed path round the Earth, 
and the time of delay can be measured with high precision. If we suppose 
that the satellites are placed close enough to each other, then the trajectory 
of the radar wave can be assumed as circular and the gravitational potentials 
at all points crossed by the wave as equal. Thus any reference made by Burcev 
to Shapiro's experiment (Shapiro, 1968) [where the cover times of radar 
signals passing the same distance in regions with different gravitational 
potentials are measured-see Marinov (1976d)] is out of place, and we can 
treat Burcev's proposal by the help of our Figure 2, assuming that clock C (an 
atomic clock) is attached to the mirrors M 1 and Mk, so that the time in which 
a light pulse covers the path from M 1 to Mk, or from Mk to M1, can be 
measured. 

According to the Einstein theory of general relativity (Burcev, 1974; 
Landau and Lifshitz, 1955; Tonnelat, 1964) this time, respectively, for the 
"direct" (+) and "opposite" ( - )  pulse is 

1 +-v/c 
= t (1  - v 2 / c 2 ) 1 / 2  (4.3) 

where t = d/c = 2rrR/c is the time registered on the same clock if the disk is at 
rest. 

According to the traditional Newtonian ether theory this time is 

t 
t} - (4.4) 

1 ~v/e 
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According to our absolute space-time theory this t ime is [see formula (2.13)] 

t 0 - ~ = t  1-+ (4.5) 
Co- 

If this time should be measured on a clock that rests in absolute space, it 
will be 

t + - d I+_v/c 
= -;÷ = t (4.6) 

c - (1 - -  V2/C2) 112 

When we have to measure the absolute time interval t -+ by the help of  a 
clock that  rests in absolute space, the problem arises about the time synchroniza- 
tion of spatially separated clocks. This problem is solved by us (theoretically and 
practically) by the help of  a rotating rigid shaft. However, in the "rotating disk" 
experiment the problem about the time synchronization of spatially separated 
clocks can be eliminated ff we choose an appropriate rotation7 ~_ velocity v, so 
that the light pulse, emitted by M1 when it passes near the clock C, which is at 
rest, will arrive at M k when M k passes (after one or more revolutions) near C. 

Let us note that Burcev (1974) wrongly writes formula (4.5) as corresponding 
to the Newtonian ether theory. In a letter to the author of  18 September 1974 
he agreed that the true formula that must be written when proceeding from the 
traditional Newtonian theory is (4.4). 

We have to add here that according to the majority of  the relativists the 
"rotating disk" experiment can be treated only with the help of  the mathe- 
matical apparatus of  general relativity. However certain relativists (see, for 
example, Laue, 1955) assert that this can be done also by the apparatus of  
special relativity and perform suitable calculations making use of  the Lorentz 
transformation. 

Let us see what results the special relativity way leads to. Let us attach a 
moving frame K '  to the rotating disk and a rest frame K to absolute space. 
Obviously', K' is not an inertial frame because at any moment  its velocity 
changes its direction. However, the absolute value of  the velocity remains 
constant and this makes it possible to use the Lorentz transformation formulas. 
For the initial event (sending of  a light pulse from M~) let us take x'l = 0, 
t' 1 = 0 and for the final event (arriving of the signal at Mk) x ;  = d, t ;  = d/c. 
Substituting these values into the Lorentz transformation formulas for time 
(see, for example, Marinov, 1975b) and subtracting the first formula thus 
obtained from the second, we obtain the result (4.6). Now this t ime is 
measured on a clock that  is at rest. The time measured on a clock that is 
attached to the moving disk must be equal to t '  = d/c, both for the "direct" 
and for the "opposi te"  pulses. 

In Figure 3 we give the graphs of the relations t+/t versus v/c drawn 
according to formulas (4.3)-(4.5). Thus an experiment such as the one 
proposed by Burcev can choose between these three rival theories. However, 
since the relativity theory was knocked out by our "coupled-mirrors" 
experiment (Marinov, 1976c), as well as by the disrupted "rotating disk" 
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Fig. 3. The relative times in which the "direct" light pulse makes a whole 
revolution on the rotating disk, according to the theories of Newton, 
Einstein, and Marinov. 

experiment (Marinov, 1976a), such a second-order experiment has to choose 
only between the Newtonian and our theories. Taking into account, however, 
that many second-order experiments (the Michelson-Morley experiment, the 
Ives-Stilwell experiment, and all experiments where the time dilation appears, 
i.e., the whole of  high-velocity physics) have knocked out the traditional 
Newtonian ether theory, then the conclusion is to be drawn that at the present 
time only our absolute space-time theory corresponds to physical reality. 
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